• A. Zinchenko Institute of Microbiology of the National Academy of Sciences of Belarus
  • L. Birichevskaya Institute of Microbiology of the National Academy of Sciences of Belarus
  • A, Shchokolova Institute of Microbiology of the National Academy of Sciences of Belarus
  • P. Krasochko Institute of Microbiology of the National Academy of Sciences of Belarus
  • A. Barashkov Vitebsk Veterinary Academy



Veterinary medicine, cats, immunotherapy, cyclic diguanosine monophosphate, , therapeutic in situ antitumor vaccine


The present study is focused on the first attempt to use an enzymatically produced biological preparation of cyclic diguanosine monophosphate (cyclic di-GMP) for the therapy of animal cancer. Feline breast carcinoma was chosen as the test model. The preparation was administered intratumorally to induce the immunogenic death of a part of the cancer cells and thus carry out the so-called in situ antitumor vaccination. Preliminary results indicate good therapeutic prospects of studied biopreparation for animal cancer treatment.

In conclusion, the expedience of further trials of cyclic di-GMP preparation for in situ antitumor vaccination was stated. The need to supplement this mono-preparation with another immunostimulating adjuvant characterized by a mechanism of action distinct from that exhibited by cyclic di-GMP was emphasized. DNA preparation comprising the so-called immunostimulating CpG motifs was provided as an example of such compound. 

Author Biographies

A. Zinchenko, Institute of Microbiology of the National Academy of Sciences of Belarus

Professor, D.Sc. (Biology), Head of the Laboratory

L. Birichevskaya , Institute of Microbiology of the National Academy of Sciences of Belarus

Associate Professor, Ph.D. (Biology), Senior researcher  

A, Shchokolova , Institute of Microbiology of the National Academy of Sciences of Belarus

Associate Professor, Ph.D. (Biology), Senior researcher  

P. Krasochko , Institute of Microbiology of the National Academy of Sciences of Belarus

Ph.D. (Biology), Senior researcher

A. Barashkov , Vitebsk Veterinary Academy

Professor, D.Sc. (Biology and Veterinary), Head of the Department


Reed S.G., Orr M.T., Fox C.B. Key roles of adjuvants in modern vaccines // Nat. Med. – 2013. –

Vol. 19, № 12. – P. 1597–1608. DOI: 10.1038/nm.3409.

Hu H.G., Li Y.M. Emerging adjuvants for cancer immunotherapy // Front. Chem. – 2020. – Vol. 8. – Art. 601. DOI: 10.3389/fchem.2020.00601.

Tamayo R., Pratt J.T., Camilli A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis // Annu. Rev. Microbiol. – 2007. – Vol. 61, № 1. – P. 131–148.

Jenal U., Reinders A., Lori C. Cyclic di-GMP: second messenger extraordinaire // Nat. Rev. Microbiol. – 2017. – Vol. 15. – P. 271–284.

Romling U., Galperin M.Y., Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger // Microbiol. Mol. Biol. Rev. – 2013. – Vol. 77, № 1. – P. 1–52.

Cui T., Cang H., Yang B., He Z.G. Cyclic dimeric guanosine monophosphate: activation and inhibition of innate immune response // J. Innate

Immun. – 2019. – Vol. 11, № 3. – P. 242–248. DOI: 10.1159/000492679.

Karaolis D.K., Means T.K., Yang D., Takahashi

M., Yoshimura T., Muraille E., Philpott D., Schroeder J.T., Hyodo M., Hayakawa Y., Talbot B.G., Brouillette

E., Malouin F. Bacterial c-di-GMP is an immunostimulatory molecule // J. Immunol. – 2007. –

Vol. 178, № 4. – P. 2171–2181. DOI:


Burdette D.L., Monroe K.M., Sotelo-Troha K., Iwig J.S., Eckert B., Hyodo M., Hayakawa Y., Vance R.E. STING is a direct innate immune sensor of cyclic di-GMP // Nature. – 2011. – Vol. 478, № 7370. – P. 515–518. DOI: 10.1038/nature10429.

Parvatiyar K., Zhang Z., Teles R.M., Ouyang S., Jiang Y., Iyer S.S., Zaver S.A., Schenk M., Zeng S., Zhong W., Liu Z.J., Modlin R.L., Liu Y.J., Cheng G. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic diAMP to activate a type I interferon immune response // Nat. Immunol. – 2012. – Vol. 13, № 12. – P. 1155– 1161. DOI: 10.1038/ni.2460.

Wu J.J., Li W.H., Chen P.G., Zhang B.D., Hu

H.G., Li Q.Q. et al. Targeting STING with cyclic diGMP greatly augmented immune responses of glycopeptide cancer vaccines // Chem. Commun. –

– Vol. 54. – P. 9655–9658. DOI:


Corrales L., Glickman L.H., McWhirter S.M., Kanne D.B., Sivick K.E., Katibah G.E., Woo S.R., Lemmens E., Banda T., Leong J.J., Metchette K., Dubensky T.W., Gajewski T.F. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity // Cell Rep. – 2015. – Vol. 11, № 7. – P. 1018–1030. DOI: 10.1016/j.celrep.2015.04.031.

Zhu Y., An X., Zhang X. et al. STING: a master regulator in the cancer-immunity cycle // Mol. Cancer. – 2019. – Vol. 18, № 1. – Art. 152. DOI: 10.1186/s12943-019-1087-y.

Le Naour J., Zitvogel L., Galluzzi L., Vacchelli E., Kroemer G. Trial watch: STING agonists in cancer therapy // Oncoimmunol. – 2020. – Vol. 9, №

– Art. 1777624. DOI:


Motedayen А.L., Pease J.E., Sharma R., Pinato D.J. Challenges and Opportunities in the Clinical Development of STING Agonists for Cancer Immunotherapy // J. Clin. Med. – 2020. – Vol. 9, № 10. – Art. 3323. DOI: 10.3390/jcm9103323.

Tadmor T. Time to understand more about spontaneous regression of cancer // Acta Haematol. – 2019. – Vol. 141. – P. 156–157.

Zinchenko A.I., Birichevskaya L.L. Lessons drawn from spontaneous cancer regression // Annual Transaction Institute of Microbiology, NAS Belarus “Microbial biotechnologies: basic and applied aspects”, Vol. 12, Minsk, 2020, Belaruskaya Navuka Press. – P. 313–328 (in Russian).

Hoption Cann S.A., van Netten J.P., van Netten C. Dr William Coley and tumour regression: a place in history or in the future // Postgrad. Med. J. – 2003. – Vol. 79. – P. 672–680.

van den Boorn J.G., Hartmann G. Turning tumors into vaccines: co-opting the innate immune system // Immunity. – 2013. – Vol. 39, № 1. – P. 27– 37.

Hammerich L., Binder А., Brody J.D. In situ vaccination: cancer immunotherapy both personalized and off-the-shelf // Mol. Oncol. –2015. – Vol. 9, № 10. – Р. 1966–1981. DOI: 10.1016/j.molonc.2015.10.Gl6.

Zinchenko А.I., Shchokolova А.S., Birichevskaya L.L. On the problem of development of the universal immunotherapeutic anticancer vaccine // Proceedings of the National Academy of

Sciences of Belarus. Вiological series. – 2018. – Vol.

, № 3. – P. 374–381 (in Russian). DOI: 10.29235/1029-8940-2018-63-3-374-381.

Korovashkina A.S., Rymko A.N., Kvach S.V., Zinchenko A.I. Enzymatic synthesis of c-di-GMP using inclusion bodies of Thermotoga maritima full-length diguanylate cyclase // J. Biotechnol. –2012. –Vol. 164, № 2. –P. 276–280.

Bode C., Zhao G., Steinhagen F., Kinjo T., Klinman D.M. CpG DNA as a vaccine adjuvant // Expert Rev. Vaccines. – 2011. – Vol. 10, № 4. – P. 499– 511. DOI: 10.1586/erv.10.174.

Scheiermann J., Klinman D.M. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer // Vaccine. – 2014. – Vol. 32, № 48. – P. 6377–6389. DOI: 10.1016/j.vaccine.2014.06.065.

Li K., Qu S., Chen X., Wu Q., Shi M. Promising targets for cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways // Int. J. Mol. Sci. – 2017. – Vol. 18, № 2. – Art. 404. DOI: 10.3390/ijms18020404.

Krieg A.M. Therapeutic potential of toll-like receptor 9 activation // Nat. Rev. Drug Discov. – 2006. – Vol. 5, № 6. – P. 471–484. DOI: 10.1038/nrd2059.

Pontarollo R.A., Babiuk L.A., Hecker R., van Drunen Littel-van den Hurk S. Augmentation of cellular immune responses to bovine herpesvirus-1 glycoprotein D by vaccination with CpG-enhanced plasmid vectors // J. Gen. Virol. – 2002. – Vol. 83, № 12. – P. 2973–2981. DOI: 10.1099/0022-1317-83-122973.

Zinchenko A.I., Kvach S.V., Shchokolova A.S. Construction of plasmid enriched with immunostimulatory CpG motifs // East. Eur. Sci. J. (Dusseldorf). – 2014. – № 3. – P. 10–13.